Application description

Item number	Product code
0108010.xxx	MCU-16 SMI AC
0108011.xxx	MCU-16 SMI LoVo

1 Introduction 3
1.1 About this document 3
1.2 Purpose of the application and access levels 3
1.3 Terms / abbreviations within this document 3
22.1Specific properties of the device4
Hardware properties 4
Software properties 4
3Structure of the application in ETS 54
4 Parameters5
4.1Basic settings5
4.2
4.2.1Channel (x)6
Lock functions 6
4.2.2 Feedback 8
4.2.3 Product 9
4.2.4 Scene control 11
4.2.5 Blind switch 11
4.2.6 Binary input 12
5 Communication objects 14
5.1 Basic objects 14
5.2 Local commands 15
5.3 Central commands 16
5.4 Feedbacks 17
5.5 Inputs switch 18
5.6 Binary inputs 19
6Annex20
6.1 Carrier products 20
6.1.1 Shutter open going down 20
6.1.2 Shutter closed going down 20
6.1.3 Roller shutters 20
6.1.4 Vertical awning or counter-tension systems 20
6.1.5 Sliding-arm awning 21
6.1.6 Drop-arm awning 21
6.1.7 Articulated-arm awning 21

1 Introduction

1.1 About this document

This document explains the significance and setup of the individual communication objects and parameters of the device with the software ETS5 ${ }^{\text {TM }}$. The reader is provided with accompanying product data and basic knowledge to set up the device. This information is targeted towards electricians and specialist partners.
On the basis of his/her professional training, knowledge and experience as well as knowledge of the relevant standards and regulations, an electrician is able to perform work on electrical systems and to identify and avoid potential hazards independently.
The electrician is trained for the specific employment location at which he/she is working and familiar with the relevant standards and regulations associated with this product.
Validities and other applicable documents can be found in the annex.
In addition to this document, at least one basic product training is recommended.

1.2 Purpose of the application and access levels

The parameters for the device can be introduced in two different ways.
To adjust the basic parameters, the parameters are configured by means of the ETS software from version 5.
The enhanced settings can be made by means of the service tool from version 1.x. The service tool is available only from a specialist partnership.
Which enhanced settings can be made is part of the service tool documentation.

1.3 Terms / abbreviations within this document
 CO
 SCO
 Central command
 Local command
 Feedback
 BCSS object
 Communication object
 SunControlObject
 Commands sent from a switchboard. e.g. the SunControlServer
 Switch connected directly or via KNX
 Information that is sent from the actuator to the bus
 Building control system object

Caution: Material damage!

Incorrect or faulty wiring and configuration of the device can result in damage culminating in total failure.

- Ensure that the supply voltage corresponds to the requirements from the technical specifications for the device.
- Ensure that all external components, e.g. such as switches and motors, are connected in accordance with the circuit diagrams.
- For information about required settings refer to the technical documentation from the motor manufacturer.

Caution: Danger to life!

There is a danger to life in case of contact with live parts.

- Have all activities performed only by personnel qualified to do so.
- Before starting work, switch off and shut down all power supplies.

2 Specific properties of the device

2.1 Hardware properties

- 4 outputs SMI 230V AC or SMI-LoVo 24 V DC
- 8 binary inputs for potential-free contacts
- Status display for each motor output
- LED display for activation of the binary inputs
- Manual test switch per motor output
- \quad Size 4 TE - $72 \times 90.5 \times 62 \mathrm{~mm}$

2.2 Software properties

- SunControlObject - one group address for all communication
- Position feedback (height and angle)
- Motor status feedback
- Detailed diagnosis and troubleshooting via separate service tool
- iPhone app connection for manual operation
- 3 security objects per channel
- Priorities management
- Automatic lock per channel
- Limited operation

3 Structure of the application in ETS 5

After starting, the application is presented as follows:

Fig. 1 View of basic parameter settings in ETS5
Basic settings - Channel-independent parameters and functions
Channel x - Channel-related settings.
Each channel can be parameterized individually.

4 Parameters

The following pages describe the adjustable parameters for the actuator. The arrangement here is orientated to the order in ETS5. The parameters are grouped according to their tabs. All channels have the same parameters, which is why no individual listing of the 8 channels has been undertaken.
An option in bold here corresponds to the standard setting of a parameter unless otherwise indicated.
A term shown in blue is the name of the respective parameter.
A term shown in orange is the name of a communication object.

4.1 Basic settings

Group control

Active / inactive

When group control is activated, all drives on an output / line are controlled as a group. If the group control is deactivated, each drive can be controlled individually. The line assignment is irrelevant. With individual control, the channel number corresponds to the SMI key ID that is assigned by the actuator according to the SMI standard.
Test switch \quad Always active / active 30 min after reset
This parameter specifies how long after a restart the test switches on the front of the device react
to inputs by the operator.

Outputs ->
Active / inactive
Channel (x)
The available channels for the outputs can be activated or deactivated by the parameters. A change shows or hides the corresponding parameter tab and associated communication objects.

Outputs ->	
Channel (x) \quad Central address	$1 \ldots 256=$ Sector address

Sector address of a switchboard. Through the SCO, all commands are therefore sent to the actuator via a group address. See also SCO.

```
Outputs ->
    0 = Off
    Channel (x) Local address 1... 256 = Sector address
```

Link between motor channel and blind switch.

Inputs ->
Channel (x)
Selection blind switch
Using the parameters, the available channels can be configured for the inputs or even deactivated according to their use. If the blind switch is used, the motor output can be controlled by means of a conventional switch directly on the channel or by local address.
Example:
Channel 1 output Local address 1
Channel 2 output Local address 1
Channel 1 input Local address 1
The switch on input 1 controls the motors on channel 1 and channel 2
Selection binary input
A further "binary input" parameter set is shown under the respective channel

4.2 Channel (x)

4.2.1 Lock functions

SCO failure / bus voltage	No function Up / down / height / angle / height + angle / stop
The action performed if the bus voltage fails or no further SunControlObject is received.	

Se	Active / inactive
If this parameter is activated, the parameters associated with the security object and the communication objects are shown. A security object allows definition of a security status, which can be triggered manually or by failure monitoring. There are three security objects, $1-3$, with decreasing priority; security object 1 has the highest priority. The secure status of the highest active priority is always adopted. If the channel is in security status, no further central commands are executed and local commands are executed in accordance with the local command parameter.	
Security object (x)-> Movement command	p / down / height / angle / height + angle / stop
Command executed if the security object is triggered.	
Security object (x)-> Cyclic monitoring	None / 10s / 30s / 1 min / $2 \mathrm{~min} / 5 \mathrm{~min} / 10 \mathrm{~min} / 30 \min$ 1h / 2h / 5h / 12h / 24h
Cyclic monitoring detects a communication fault between actuator and switchboard. If the security object receives no telegram in the set period, it assumes a fault and triggers the security status of the security object (see movement command). The "channel (x), central command, security (x)" communication object must receive a valid telegram at least once within the set period.	
Security object (x)-> Local command	Locked / limited / released
Specifies how the actuator evaluates local commands whilst the security object is active: Locked Local commands are not executed. Limited Local commands are executed only if they are located within the specified limits. Released Local commands are executed.	
Security object (x)-> Local command -> operating area	Angle from bottom to limit Angle from top to limit Height from bottom to limit Height from top to limit
Defines the possible movement range of the local commands. In the case of an option that limits the angle, the height can no longer be changed. An option that limits the height continues to allow the angle to be changed.	

Security object (x)-> Local command $->$ limit
The parameter specifies the adjustable limit value for the operating area.

Building Management Systems
 great systems for easy living.

Reset function
 Move back to position after lock

No movement command

Up / down / height / angle / height + angle / last central command / last local command last central command or local command

The command that is executed if security status is ended. The last local command makes the motor move to the last local command received, whereas the last central command executes the last central command received. The option of the last local or central command starts the last command received, regardless of origin.

Automatic lock
 Active / inactive

Activates use of the automatic lock. Sending of a local command or manual setting of the communication object switches on the automatic lock. A switched on automatic lock means that only local and security commands are executed for the channel.

Automatic lock

Move back to position after lock

No movement command

Up / down / height / angle / height + angle / last central command

The command that is executed if the automatic lock is switched on. The last central command makes the motor move to the last central command received.

Automatic lock
 Reset after security

If security status is ended, the automatic lock is likewise switched off.

Automatic lock Active / inactive

Reset after time
The automatic lock is switched off after the parameterized time. The time is restarted after every further local command.

4.2.2 Feedback

Position	No feedback
	Position reached
	Position reached and KNX object switched on
	Position change and KNX object switched on

This parameter describes the behaviour for feedbacks with respect to position changes. If an option other than "no feedback" is active, the feedback communication objects are shown for height and angle.
"Position reached" - If this parameter is selected, the current height and angle of the motor are sent when the position is reached.
"Position reached and KNX object switched on" - If this parameter is selected, the current height and angle of the motor are sent when the position is reached only if the object channel (x), activate feedback has been switched on via KNX (1).
"Position change and KNX object switched on" - If this parameter is selected, only the current height and angle of the motor are sent only if the object channel (x), activate feedback has been switched on via KNX (1) and the position change has been altered by the parameterized percentage value at the last feedback.

Feedback 1-3 | No feedback | |
| :--- | :--- |
| | Upper end position / lower end position / |
| | Unknown position / Security lock active / |
| | automatic lock active / Operating lock active / |
| limited operation active / Check motor / | |
| | Motorcycles |

With these parameters, it can be determined which type of feedback the actuator should send. Up to 3 feedbacks can be defined per channel.
For each option selected, the corresponding communication object is shown.

"Upper end position"	The motor is in the upper end position
"Lower end position"	The motor is in the lower end position
"Unknown position"	Motor position not known (e.g. if no reference run has
	yet been executed)
"Security lock active"	At least one security lock is active
"Automatic lock active"	The automatic lock is switched on
"Operating lock active"	Local operation is locked
"Limited operation active"	The motor can be operated only to a limited extent
"Check motor"	Error message from the engine via the SMI bus
"Motor cycles"	Number of movements executed

Send BCSS object	Off Readout only / send on change / send on change of error bits

With this parameter, the BCSS object can be switched on and off. The precise structure of the object can be found in the annex.

"Readout only"	The object can be read only
"Send on change"	Every change to the object is sent
"Send on change of error bits"	Is sent in case of changes to the error bits

4.2.3 Product

Carrier product	General
Product type	Blind moving down closed
	Blind moving down open
	Roller shutter
	Awning

The type of carrier product connected to this channel is defined by this parameter. Based on the product type, movement strategies for optimal positioning and standard values for subsequent parameters are defined. If applicable, parameters are shown specifically for the product type. Further information can be found in the annex and in the data sheets for the carrier products.

Carrier product

Product type

General
Blind moving down closed
Blind moving down open
Roller shutter
Awning

On the relevant channel, there is a shutter / Venetian blind, which starts with closed slats. The following parameters must then be set in addition.

The order of the movements is determined under the movement strategy parameter, to ensure that the carrier product stands correctly and reproducibly in the desired target position.
Possible parameters:
-Move towards position from bottom
-Move towards position from top
-Move towards position from both sides
With the additional parameter slat turning time (bottom), the increments between bottom end position (slats closed) and see-through position (slats horizontal) are parameterized. Adjustment range of $0-255$ increments.

Carrier product
Product type

General

Blind moving down closed
Blind moving down open
Roller shutter
Awning

On the relevant channel, there is a shutter / Venetian blind, which starts with open slats (operating position 38°). The following parameters must then be set in addition.

The order of the movements is determined under the movement strategy parameter, to ensure that the carrier product stands correctly and reproducibly in the desired target position.
Possible parameters:
-Move towards position from bottom
-Move towards position from top
-Move towards position from both sides
With the additional parameter slat turning time (lifted), the increments between operating position (slat angle moving down) and see-through position (slats horizontal) are parameterized.
Adjustment range of $0-255$ increments.
With the additional parameter slat turning time (bottom), the increments between lower end position (slats closed) and see-through position (slats horizontal) are parameterized. Adjustment range of $0-255$ increments.

Building Management Systems
 great systems for easy living.

Carrier product
Product type

General
Shutter closed going down
Shutter open going down
Roller shutter
Awning

On the relevant channel, there is a vertical awning / seating position awning. With the tighten textile parameter, it is possible to adjust whether the cloth should be tensioned after the cloth end position is reached.
Positioning
Duration of turning slats

The parameter determines how long one step takes in the case of local and central commands as well as brief pressing of the test switch. A time of 0 ms deactivates the function.
Positioning
Shading position angle $0-100 \%$

The set position is approached via object up / shading.
Motor Change direction of rotation Active / inactive

On activation, the rotation direction is changed at the actuator output.

4.2.4 Scene control

| Overwrite saved values on download Active / inactive |
| :--- | :--- |
| By activation, the learned values of the customer are overwritten when the application is loaded. |

Use scene assignment 1 .. $8 \quad$ Active / inactive

With this parameter, up to 8 scenes can be allocated to the channel. The actual allocation to the scene is done through the parameters, which are shown on activation.
Scene
1... 64

This parameter determines with which scene communicated via bus the channel is linked.
Movement command

No movement command

Up / down / height / angle / height + angle
This parameter specifies which command is executed. Up, down, height, angle, height + angle move the motor to the corresponding position.

Lock function
None / automatic lock
This parameter defines whether the automatic lock should also be set when the scene is executed.

4.2.5 Blind switch

Not visible when, under basic settings, inputs, channel (x), blind switch has been selected.

```
Show KNX objects
```

Active / inactive
If this parameter is activated, the KNX communication objects are shown for blind switches.

Shading position (long + short) Active / inactive
In the case of a long press (down) of the blind switch followed by a short press of the switch, the shading position is approached and not the bottom end position.
Long keystroke after
$0 . . .3000 \mathrm{~ms}$

This parameter sets the press duration from which operation of the blind switch is recognised as a long switch press.

4.2.6 Binary input

Visible only if, under basic settings, inputs, channel (x), binary input has been selected.
Order of binary inputs from left:
Channel 1 binary input 1
Channel 1 binary input 2
Channel 2 binary input 1

Channel 3 binary input 2
Channel 4 binary input 1
Channel 4 binary input 2

Channel (x), binary input (x) - Function	1-bit switching Move to position Scene
Defines the general function for the input.	

Function move to position	
Channel (x), binary input (x) - Function React to	Rising edge Falling edge
With this parameter it is determined whether the approach position function should be executed on the rising or falling edge.	
Channel (x), binary input (x) - Function Movement command	Height Angle Height + angle
With this parameter it is determined which position types can be approached if the function is executed. Depending on the option, the parameters height [\%] and/or angle [\%] are shown.	

Function scene
Channel (x), binary input (x) - Function \quad React to
With this parameter it is determined whether the scene function should be executed on the rising or falling edge. Falling edge
Channel (x), binary input (x) - Function
\quad Scene
Sends the set scene via KNX object channel (x), binary input (x) scene.

5 Communication objects

The following image shows all communication objects for one channel with no connected binary input or local operation. In the ETS application, only communication objects are shown, which are required according to the parameter settings.

Number	Name	Object Function	Length	C	R	W	T	U	Data Type	Priority	
$\underline{\rightarrow} \mid 1$	SunControlObject	all functions	6 bytes	C	-	W	-	-		High	
$\overrightarrow{\boldsymbol{*}} \mid 2$	scene	scene object	1 byte	C	-	W	-	-	scene control	Low	
$\stackrel{+1}{\boldsymbol{t}} \mid 10$	channel 1, local command, end position	up / down	1 bit	C	-	W	-	-	up/down	Low	
$\stackrel{+}{\boldsymbol{t}}{ }^{-11}$	channel 1, local command, shading	up / shading	1 bit	C	-	W	-	-	up/down	Low	
$\stackrel{+}{\boldsymbol{t}} \mid 12$	channel 1, local command, turn slats	step / stop	1 bit	C	-	W	-	-	step	Low	
$\stackrel{+}{\boldsymbol{t}} \mathbf{\|} 13$	channel 1, local command, automatic lock	automatic lock	1 bit	C	-	W	-	-	boolean	Low	
$\stackrel{+}{\boldsymbol{+}}$ \| 14	channel 1, local command, height	height	1 byte	C	-	W	-	-	percentage (0.100\%)	Low	
$\stackrel{-1}{\boldsymbol{+}}{ }^{(15}$	channel 1, local command, angle	angle	1 byte	C	-	W	-	-	percentage (0.100\%)	Low	
$\stackrel{+}{\boldsymbol{t}}{ }^{\text {\| }} 16$	channel 1, central command, end position	up / down	1 bit	C	-	W	-	-	up/down	Low	
$\stackrel{+}{+} \mid 17$	channel 1, central command, shading	up / shading	1 bit	C	-	W	-	-	up/down	Low	
$\stackrel{\rightharpoonup}{\boldsymbol{H}} \mid 18$	channel 1, central command, turn slats	step / stop	1 bit	C	-	W	-	-	step	Low	
	channel 1, central command, height	height	1 byte	C	-	W	-	-	percentage (0..100\%)	Low	
$\stackrel{+}{\boldsymbol{*}} \mid 20$	channel 1, central command, angle	angle	1 byte	C	-	W	-	-	percentage (0.100\%)	Low	
$\underline{+} \mid 21$	channel 1, central command, security 1	security 1	1 bit	C	-	W	-	-	switch	Low	
$\stackrel{+1}{+\mid} 22$	channel 1, central command, security 2	security 2	1 bit	C	-	W	-	-	switch	Low	
$\stackrel{+1}{\boldsymbol{+}} \mathbf{2}$	channel 1, central command, security 3	security 3	1 bit	C	-	W	-	-	switch	Low	
$\stackrel{+1}{\boldsymbol{+}} \mathbf{2}$	channel 1, feedback, height	height	1 byte	\bigcirc	R	-	T	-	percentage (0.100\%)	Low	
	channel 1, feedback, angle	angle	1 byte	C	R	-	T	-	percentage (0..100\%)	Low	
$\stackrel{+1}{\boldsymbol{+}} \mathbf{\| c}$	channel 1, feedback 1	motor current	2 bytes	C	R	-	T	-	current (mA)	Low	
$\underline{\\|}$ + 28	channel 1, feedback 2	overcurrent	4 bytes	C	R	-	T	-	counter pulses (unsigned)	Low	
	channel 1, feedback 3	motor cycles	4 bytes	C	R	-	T	-	counter pulses (unsigned)	Low	
	channel 1, feedback BCSS	BCSS object	4 bytes	C	R	-	T	-	status sunblind \& shutter actuator	Low	
	channel 1, blind switch, control end position	up / down	1 bit	C	-	-	T	-	up/down	Low	
$\stackrel{+}{+} \mid 32$	channel 1, blind switch, control long+short	up / shading	1 bit	C	-	-	T	-	up/down	Low	
	channel 1, blind switch, control turn slats	step / stop	1 bit	C	-	-	T	-	step	Low	
$\stackrel{\mid}{\boldsymbol{\epsilon}} \mathbf{\|} 34$	channel 1, blind switch, control pincer-like grip	automatic lock	1 bit	C	-	-	T	-	boolean	Low	

Example communication objects for one channel

5.1 Basic objects

SCO SunControlObject 6 byte
区 K 6-byte KNX communication object for connection between weather control and motor controls. Allcommands from the control (such as shading, time and security commands) are sent to the motorS controls via the same group address for up to 256 sectors (façade sections). The allocation to thesector is set in the motor control for each channel.

2	18.001 Scene control
Scene object	1 byte

区 K With this object a set scene can be retrieved or programmed.Here:
® S Value 0-63 retrieves corresponding scene 1-64Value 128-191 programmes the current position into the corresponding scene

5．2 Local commands

10，35，60，85，（110，131，152，173，194，215，236，257，278，299，320，341）		1.008	／down
Channel（ x ），local command，end position		1 bit	
$\begin{aligned} & \text { 囚K } \\ & \square \mathrm{L} \\ & \text { 区S } \\ & \square U ̈ \\ & \square \mathrm{~A} \end{aligned}$	With this object，the motor is moved into the respective end position．The respective output is triggered until a stop command is received，the parameterized movement time has passed or the motor end position switch is triggered．$\begin{aligned} & 0 \text { - Up } \\ & 1 \text { - Down } \end{aligned}$		
11	86，（111，132，153，174，195，216，237，258，279，300，321，342）	1.008	／dow
Channel（ x ），local command，shading		1 bit	
$\begin{aligned} & \boxtimes K \\ & \square L \\ & \text { Q } \\ & \square \ddot{O} \\ & \square A \end{aligned}$	The object serves to approach the operating position of the carrier product（shutter 38° ）directly． The respective output is triggered until a stop command is received，the parameterized movement time has passed or the motor end position switch is triggered． $0-\cup p$ 1 －Down／operating position		
12，37，62，87，（112，133，154，175，196，217，238，259，280，301，322，343）		1.007	
Channel（ x ），local command，turn slats		1 bit	
$\begin{aligned} & \boxtimes K \\ & \square L \\ & \boxtimes S \\ & \square U ̈ \\ & \square A \end{aligned}$	With the object，the motor can be controlled incrementally up or down．The duration of the increment is dependent upon the parameter set． 0 －Step up 1 －Step down		
13，38，63，88，（113，134，155，176，197，218，239，260，281，302，323，344）		1.00	Boolean
Channel（x），local command，automatic lock		1 bit	
$\begin{aligned} & \boxtimes K \\ & \square L \\ & \boxtimes S \\ & \square U ̈ \\ & \square A \end{aligned}$	If this object is described with a 1 ，the automatic lock is activated on the channel．With the automatic lock activated，the central commands（end position，shading，height，angle）are no longer executed．Local commands and security objects continue to be executed．		
14，39，64，89，（114，135，156，177，198， Channel（x），local command，height		． 001	00
		1 byte	
区 K 区 S Ü A	With the object，the motor can be positioned at $0-100 \%$ ． Here， 0 or 0% corresponds to the top motor end position and 255 or 100% to the bottom motor end position．		
15，40，65，90，（115，136，157，178，199，220，241，262，283，304，325，346）		5.001	$0-100$ percent
Channel（ x ），local command，angle		1 byte	
QK $\square L$ Q $\square U$ $\square \mathrm{U}$	This object is shown only if a corresponding product type（shutter）has been selected in the product parameter，which can perform an angle function．The value of this object determines the angle as a percentage，depending on the slat turning increments set． Here，the value 0 or 0% corresponds to a max．open slat and 255 or 100% to a closed slat．		

5．3 Central commands

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{16，41，66，91，（116，137，158，179，200，221，242，263，284，305，326，347）} \& 1.008 \& Up／down \\
\hline \multicolumn{2}{|l|}{Channel（x），central command，end position} \& 1 bit \& \\
\hline \begin{tabular}{l}
区 K \\
\(\square\) L \\
区 S \\
\(\square U ̈\) \\
\(\square \mathrm{A}\)
\end{tabular} \& With this object，the motor is moved into the respective end position． The requirement is that the automatic lock is not set．
\[
\begin{aligned}
\& 0 \text { - Up } \\
\& 1 \text { - Down }
\end{aligned}
\] \& \& \\
\hline \multicolumn{2}{|l|}{17，42，67，92，（117，138，159，180，201，222，243，264，285，306，327，348）} \& 1.008 \& Up／down \\
\hline \multicolumn{2}{|l|}{Channel（x），central command，shading} \& 1 bit \& \\
\hline \multicolumn{4}{|l|}{K K} \\
\hline \multicolumn{2}{|l|}{18，43，68，93，（118，139，160，181，202，223，244，265，286，307，328，349）} \& ． 007 \& p \\
\hline \multicolumn{2}{|l|}{Channel（x），central command，turn slats} \& 1 bit \& \\
\hline \begin{tabular}{l}
With the object，the motor can be controlled stepwise up or down．The duration of the step is dependent upon the parameter set．The requirement is that the automatic lock is not set． \\
0 －Step up \\
1 －Step down

 \& \multicolumn{3}{|l|}{

With the object，the motor can be controlled stepwise up or down．The duration of the step is dependent upon the parameter set．The requirement is that the automatic lock is not set．

0 －Step up

1 －Step down
\end{tabular}}

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{19，44，69，94，（119，140，161，182，203， 22 Channel（x），central command，height}} \& ． 00 \& 00 perce

\hline \& \& byte \&

\hline \multicolumn{4}{|l|}{| With the object，the motor can be positioned at $0-100 \%$ ． |
| :--- |
| Here， 0 or 0% corresponds to the top motor end position and 255 or 100% to the bottom motor end position． |
| The requirement is that the automatic lock is not set． |}

\hline \multicolumn{2}{|l|}{21－23，46－48，71－73，96－98，（121－123，142－144，163－165，184－186，205－207，226－228， 247－249，268－270，289－291，310－312，331－333，352－354）} \& 5.001 \& $0-100$ percent

\hline \multicolumn{2}{|l|}{Channel（x），central command，angle} \& 1 byte \&

\hline
\end{tabular}

区 K This object is shown only if a corresponding product type（shutter）has been selected，which can
$\square L \quad$ perform an angle function．The value of this object determines the angle of the shutter as a
区 S percentage，depending on the slat turning increments set．
\square Ü
Here，the value 0 or 0% corresponds to a max．open slat and 255 or 100% to a closed slat．
$\square \mathrm{A}$

$21-23,46-48,71-73,96-98,121-123,146-148,171-173,196-198$	1.001 Switch
Channel（x），central command，security $1 \ldots 3$	1 bit

$\boxtimes K \quad$ If this object is described with a 1，the parameterized security status of the respective security $\square L \quad$ object is assumed．At the start of security status，the parameterized movement command isexecuted．Whilst security status is active，no further commands are executed other than if they ® reset a security object．Resetting is performed by describing the security object with 0 ．The $\square \mathrm{A}$ priority of the individual security objects is defined，where 1 triggers the highest and 3 the lowest priority．
5.4 Feedbacks

$24,49,74,99,(124,145,166,187,208,229,250,271,292,313,334,355)$	1.001	Switch
Channel (x), activate feedback	1 bit	

$\boxtimes K \quad$ This object switches the position feedback on or off. It is not visible if the channel (x), feedbacks, $\square L \quad$ position parameter is set to no feedback or position reached.

$$
0 \text { - Off }
$$1 - On

$\square \mathrm{A}$

```
25,50,75,100, (125, 146, 167, 188, 209, 230, 251, 272, 293, 314, 335, 356)
5.001 0-100 percent
```

Channel (x), feedback, height
1 byte
Channel (x), feedback, height 1 byte
X K The value of this object feeds back the current position (height) from the motor.
$\boxtimes L \quad$ Here, 0 or 0% corresponds to the top motor end position and 255 or 100% to the bottom motor end position.
$26,51,76,101,(126,147,168,189,210,231,252,273,294,315,336,357)$ $5.0010-100$ percent
Channel (x), feedback, angle 1 byte
Q $\mathrm{K} \quad$ This object is shown only if a parameter has been selected in the product parameter, which can $\boxtimes L \quad$ perform an angle function. The value of this object determines the angle of the shutter as aS percentage, depending on the slat turning increments set.
区 Ü Here, the value 0 or 0% corresponds to a max. open slat and 255 or 100% to a closed slat.
\square
27-29, 52-54, 77-79, 102-104, (127-129, 148-150,169-171, 190-192, 211-213, 232-234, 253-255, 274-276, 295-297, 316-318, 337-339, 358-360)
Channel (x), feedback $1 \ldots 3$
K Feeds back to the bus the status that has been parameterized accordingly.
$\boxtimes L \quad$ The following 1.002 Boolean 1 bit feedbacks can be selected:
\square S upper end position / lower end position / position unknown / security lock active / automatic lock U U active / operating lock active / limited operation active / check motorA The motor cycles feedback is counting pulses, 12.001 counting pulse, 4 byte. Here, the movement cycles of the drive are counted.
$30,55,80,105,(130,151,172,193,214,235,256,277,298,319,340,361) \quad 241.800$ Status shading
Channel (x), feedback BCSS 4 byte
区 K Using the BCSS object, several feedbacks can be requested for each channel within one object.
$\boxtimes L \quad$ The specific explanation of the object can be found in the annex.

5．5 Inputs switch

31，56，81， 106		1.008	Up／down
Channel（x），blind switch，control end position		1 bit	
区 K \square L $\square \mathrm{S}$ ® Ü \square A	The objects are visible only if the show KNX objects parameter has been activated． The closed switch sends the long switch press to the object．Here： Up switch－Value 0 Down switch－Value 1		
$32,57,82,107$ Channel（ x ），blind switch，control long＋short		． 008	Up／down
		b	
区 K The objects are visible only if the show KNX objects parameter has been activated． The connected switch sends a 1 to the object if a long switch press is executed followed by a S short switch press using the down switch blind switch．With the up switch，a 0 is always sent to the object． A	The objects are visible only if the show KNX objects parameter has been activated． The connected switch sends a 1 to the object if a long switch press is executed followed by a short switch press using the down switch blind switch．With the up switch，a 0 is always sent to the object．		
33，58，83， 108 Channel（x），blind switch，control turn slats		． 007	
		1 b	
The objects are visible only if the show KNX objects parameter has been activated． L The connected switch sends the short switch press to the object．Here： Up switch－Value 0 Down switch－Value 1 A			
34，59，84， 109 Channel（x），blind switch，control pincer－like grip		1.002	Boolean
		b	
The objects are visible only if the show KNX objects parameter has been activated． If the up and down switches are operated simultaneously on the connected switch，this is referred to as the pincer－like grip．Here： Long operation Sends a 0 to the object A Short operation Sends a 1 to the object			

5.6 Binary inputs

$31,56,81,106$	$33,58,83,108$	1.001	Switch
Channel (x), binary input 1	Channel (x), binary input 2	1 bit	

$\boxtimes \mathrm{K} \quad$ The objects are visible only if the input parameter has been set to binary input.
$\boxtimes L \quad$ The connected potential-free contact sends the respective status to the object.
\square A
31, 56, 81, 106
33, 58, 83, 108
$5.0010-100$ percent
Channel (x), binary input 1 , height
Channel (x), binary input 2, height 1 byte
X K The objects are visible only if the input parameter has been set to binary input.Accordingly, after parameterisation, the pabiectthe connected potential-free contact.A

Channel (x), binary input 1 , angle
Channel (x), binary input 2, angle 1 byte

区 K The objects are visible only if the input parameter has been set to binary input.Accordingly, after parameterisation, the object sends the set value to the rising or falling edge ofS the connected potential-free contact.

$31,56,81,106$	$33,58,83,108$	18.001
Channel (x), binary input 1, scene control		
	Channel (x), binary input 2, scene	1 byte

$\boxtimes \mathrm{K} \quad$ The objects are visible only if the input parameter has been set to binary input.Accordingly, after parameterisation, the object sends the set scene to the rising or falling edge ofthe connected potential-free contact.

6 Annex

6.1 Carrier products

6.1.1 Shutter open going down

Also referred to as Venetian slats or a Venetian blind. The slats are open when going down. The angle is specified mechanically and cannot be changed by the control.
Advantages of the carrier product open going down:

- Defined shading position in going down position for uniform façade appearance
- No dark phase
- Ideal for solar, glare, thermal and visual protection

Notes:

- Motors with 3 end switches are possible (note!).
- Automated products must be protected from wind and poss. frost.

6.1.2 Shutter closed going down

Also referred to as Venetian slats or a Venetian blind. The slats are closed when going down. The angle is specified mechanically and cannot be changed by the control.
Advantages of the carrier product closed going down:

- Slats can be closed in any position
- Ideal for thermal and visual protection

Notes:

- Motors with 3 end switches are possible (note!).
- Automated products must be protected from wind and poss. frost.

6.1.3 Roller shutters

The roller shutter hanging is "wound up" in the box around the roller shutter shaft.
Advantages:

- Improved protection from intrusion and weather
- Good dimming of the room

Notes:

- Tube motors can be installed in the roller shutter shaft both on the left and right.

The result of this is that the connection for up / down must be checked beforehand.

- Not suitable for solar protection in the workplace.

6.1.4 Vertical awning or counter-tension systems

The awning hanging here is "wound up" around the motor shaft.
Advantages:

- Decorative façade element

Notes:

- Tube motors can be installed in the motor shaft both on the left and right. The result of this is that the connection for up / down must be checked beforehand.
- Automated awnings must be protected from wind, poss. rain and poss. frost.

6.1.5 Sliding-arm awning

The sliding-arm awning initially moves vertically downwards and then extends the drop arm from a certain height.
Advantages:

- Better outlook and solar protection than with vertical awnings

Notes:

- Tube motors can be installed in the motor shaft both on the left and right.

The result of this is that the connection for up / down must be checked beforehand.

- Automated awnings must be protected from wind, poss. rain and poss. frost.

6.1.6 Drop-arm awning

Unlike the sliding-arm awning, the drop-arm awning extends the drop arm immediately when moving downwards.
Advantages:

- Better outlook and solar protection than with vertical awnings

Notes:

- Tube motors can be installed in the motor shaft both on the left and right.

The result of this is that the connection for up / down must be checked beforehand.

- Automated awnings must be protected from wind, poss. rain and poss. frost.

6.1.7 Articulated-arm awning

The articulated-arm awning is often referred to as a seating or folding-arm awning. The hanging is "wound up" around the motor shaft.
Advantages:

- Large area that can be shaded.
- Shade edge tracking possible

Notes:

- Tube motors can be installed in the motor shaft both on the left and right.

The result of this is that the connection for up / down must be checked beforehand.

- Automated awnings must be protected from wind, poss. rain and poss. frost.

